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TABLE I. Values of" fJ, and n (referred to the cubic axes) for the twelve (111) (110) slip systems. 

No. 
of slip Slip Slip 
system plane direction 2,u 2,. u 2fu 4,._ 

1 (111) [Qilj 0 -SI SI 0 
2 (111) [101 -S2 0 S2 S2 
3 (11!) [lioJ S. -So 0 -Sa 
4 (111) [101j S. 0 -S4 S. 
5 (llD [011 0 S. -S5 0 
6 (111) [liOJ S6 - S8 0 S8 
7 (lil) [llOJ S7 -S7 0 S7 
8 (lil) Ci01J -S8 0 S8 -S8 
9 Oil) [OPJ 0 -So S9 0 

10 (111) [Ol1J 0 -S10 S10 0 
11 (ill) [101J -S11 0 S11 SI1 
12 (ill) [110J -S12 S12 0 S12 

independent (the hydrostatic part being zero) and 
hence, at least five independent slip systems are 
required. Jl- 13 Under highly symmetrical conditions 
such as e>..'ist in the present analysis, however, this 
requirement can be relaxed.14 

Values of €i j, together with those of (3 and n, for the 
twelve slip systems are given in Table I; cubic axes have 
been used as reference axes. Values of 'Y i have been 
converted to 5 i , the slip density expression in Eqs. (2) 
and (3). See Appendix for details. Table I essentially 
follows CSI's notation, with the sense of some slip 
directions changed so as to conform with the positive 
direction of the shears as written. Two sign errors in 
T able III of CSI's paper have also been corrected. 

DETAILED CALCULATIONS 

1. Wire Drawing 

Wire textures of fcc metals and alloys are often a 
combination of (001) and (111 ) components; i.e., the 
grains have their (001 ) and (111) directions along the 
wire axis. Hence the effect of wire-drawing of crystals 
of these two orientations on the slip-induced anisotropy 
is of interest. 

(a) Drawing of a (001) crystal 

Let z be the [OOlJ wire axis, and x and y be the [100J 
and [OlOJ directions, respectively. The macroscopic 
strain components are: 

€"",, = -r/2, €yy= -r/ 2, €zz=r, 
(4) 

where r is the reduction of area. Since wire drawing can 
be considered as tension along the wire axis,ls Fig. 1 
shows that four of the twelve slip systems, 3, 6, 7, and 
12 (see Table I), do not operate because the slip direc­
tions are perpendicular to the [OOlJ tensile axis. From 

14M. R. Pickus and C. H. Mathewson, J. Inst. Metals 64, 237 
(1939) . 

15 Although the stress system in wire-drawing probably consists 
of a tensile stress u along the wire axis and a compressive stress 
-nu along two orthogonal axes in the radial direction, addition 
of a hydrostatic tension ntT (which does not affect slip) will result 
in the equivalent system of a single tensile stress (1 +n)u along the 
wire axis. 

4,.., 4,%" v"l.fJI v"l.fJ2 v"l.fJ. VJnl VJn2 VJna 

SI -SI 0 1 1 1 1 1 
0 -S2 1 0 1 1 1 1 
Sa 0 1 1 0 1 1 1 
0 S. 1 0 -1 1 1 -1 
S. S. 0 1 -1 1 1 -1 

-S8 0 1 1 0 1 1 -1 
S7 0 1 -1 0 1 -1 1 
0 Sa 1 0 1 1 -1 1 
S. S. 0 1 -1 1 -1 1 

-SIO S10 0 1 1 -1 1 1 
0 SI1 1 0 -1 -1 1 1 
SI2 0 1 -1 0 -1 1 1 

Table I, the strain components in terms of the slip 
densities of the eight active slip systems are: 

2€xx= -52+54-58-511, 

2€IIY= -51+55-59-510, 

2€ .. =SI+52-54-5s+58+59+S10+5u, (5) 

4€lIz=52+54-58+5u, 

4€zx =51+55+59-S10, 

4€xlI= -51-52+S4+55+58+59+510+5u. 

From the symmetry of the slip systems, the I 5 i I 's 
must be equal. Then solutions of Eqs. (4) and (5) give 

51 =52=58=59=510=5u =r/ 4, 

S 4=S5= - (r/4).16 (6) 

Too 

100 

FIG. 1. Standard (001) stereographic projection of cubic crystal. 

16 For slip systems (4) and (5), the Miller indices for the slip 
plane in Table I are the negative of those of Fig. 1, resulting in the 
sign change of the shears. For simplicity, we shall consistently use 
the slip density values in Table I for slip systems whose Miller 
indices for plane or direction are the negative of those listed. 
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By putting Eq. (6) into (2) and using the pertinent 
values of (3 from Table I, one obtains for L.F. defor­
mation 

E LF = (1/16)KLFr(a12+a22+2as2) 

= (1/16)KLFTal+const. (7) 

Since all values are positive, Eq. (7) means that the 
induced magnetic energy is a minimum on the x-y plane 
(aa=O). Hence the wire axis [OOlJ becomes a hard axis 
of magnetization. 

Substitution of Eq. (6) and the n values of Table I 
into Eq. (3) gives 

Esc= (1/16)Ksc[(r/4)XOJ=0. (8) 

Hence there is no magnetic anisotropy produced by the 
S.c. type deformation. 

(b) Drawing of a (111) crystal 

Let x'- [ hoJ, y'-[Ii2J, and z'-[111J be a set of 
coordinate axes for the macroscopic strain tensor in this 
system; this retains the z' direction as the wire axis and 
the other two directions along the radial direction, Fig. 
2. The matrix for the transformation of the specinlen 
axes to the cubic axes referred to in Table I is'7 

X' y' z' 

1 1 1 
X 

.y2 .y6 ,13 

1 1 1 
Y 

.y2 .y6 .y3 

2 1 
Z 0 

.,,;6 .y3. 

Hence from the strain components for wire-drawing 
[Eq. (4)J, 

€:z:'z, =Ey'y' = -r/ 2, Ez'z, =r, Ey' Z' = Ez'x'= €x'y,= o, (9) 

and the tensor relation Eij=l.'ilj'jEi'i' (i,j=x, y, z; i',j' 
=x', y', z') 18 where the l's are the components of the 
transformation matrix, one obtains 

From the stereographic projection of Fig. 2, the 
operating slip systems for [ l11J wire drawing are 
(l1i) [101J, (l1i) [Ol1J, (IiI) [110J, (li1) [Ol1J, 
(i ll) [101J, and (ill) [110J, corresponding to Nos. 
4,5,9, 11, and 12 of Table 1. The other six systems are 
inoperative because of zero values of Schmid factor. 
From Table I, the strain components in terms of slip 

17 J. F. Nye, Physical Properties of Crystals (Oxford University 
Press, London, 1960), p. 9. 

18 Ref. 17, p. 11. 

densities are: 

2E"",,=S4+S7-SU-S12, 

2Eyy=S.-S7- S9+S 12, 

2E .. = -S4-S.+S9+S11, 

4ElI",=S4+S7+SU+S12, 

4Ez",=S5+S7+S9+S12, 

4Exy=S4+S5+S9+SU. 

Solution of Eqs. (10) and (11) gives 

(11) 

S4=S5=S7=S9=SU=SI2=r/2. (12) 

Putting (12) into (2) and using the (3 values of Table I, 
one obtains for L.F. deformation 

E LF = -jK LFr(ala2+a2as+asal)+const. (13) 

Equation (13) is a minimum along [111J, or the wire 
axis. Hence this axis becomes the induced easy axis of 
magnetization. 

Substitution of (12) into (3) and using the n values 
of Table I gives 

Esc= - (1/48)Kscr(ala2+a2as+asal). (14) 

Again the wire axis becomes the induced easy a).'is. 

2. Rolling 

Rolling of the following orientations are of interest: 

Roll Roll 
plane direction 

1. (001) [iooJ 
2. (001) [itOJ 
3. (110) [OOlJ 
4. (110) 012J 
5 . (110) [110J 
6. (111) [H2J 
7. (112) C!!OJ 
8. 112) [l11J 

In all the orientations above, slip directions of the 
operating slip systems (based on ma},:imum resolved 
shear stress) are symmetrically disposed about the 
rolling axis and hence comply with the stability criterion 
of Pickus and Mathewson.14 [Orientations (6) and (7), 
however, were not considered in their discussion of 
stability.J Tucker19 has pointed out, however, that the 
real test of stability is to determine whether slight dis­
placements from a .given orientation will cause rotation 
into, or away from, this orientation. In any case, the 
following analyses should be valid for rolling reductions 
in which the orientation does not change significantly. 
Moreover, by following the orientation change such as 
with x-ray techniques, the magnetic anisotropy accord­
ing to the new orientation(s) may still be obtained. 
Among the above list, (001) [ioOJ is a prominent 
recrystallization texture in face-centered cubic alloys, 
while (110) [il2J and (112) [iilJ are often found in 
the rolled state.20 

19 G. E. G. Tucker, J. Inst. Metals 82, 655 (1954). 
20 C. S. Barrett, Structure of Metals (McGraw-Hill Book Com­

pany, Inc., New York, 1952), pp. 484, 509. 


